

Effectiveness of Community-Based Interventions in Preventing Tuberculosis: A Systematic Review

Nuno Pedro Guterres Magno, Elias Pereira Moniz, Isaura Belo

Faculty of Public Health, Universitas da Paz, Timor-Leste

nunomagno007@gmail.com

Article Information

Submitted: 21 July 2025

Accepted: 01 August 2025

Publish: 30 August 2025

Keyword: Community-based intervention; Tuberculosis Prevention; Program Effectiveness;

Copyright holder: Nuno Pedro Guterres Magno, Elias Pereira Moniz, Isaura Belo

Year: 2025

This is an open access article under the [CC BY-SA](#) license.

Abstract

Introduction: Tuberculosis (TB) remains a major global infectious disease, influenced by social determinants such as poverty. Community-based interventions (CBIs) are crucial for prevention, as they address biological and economic factors, enhance early detection, and engage communities in identifying, preventing, and managing TB. Strategies like active case finding (ACF) and community-based TB preventive treatment (TPT) reduce transmission, improve diagnosis in children, overcome transport barriers, and increase patient acceptance.

Method: This systematic review examines CBIs in developed and developing countries, focusing on TB incidence and treatment adherence. Data were obtained from PubMed, Scopus, Web of Science, and Google Scholar.

Results and Discussion: Proactive case finding accelerates diagnosis and treatment, reducing transmission and improving outcomes. In Uganda, multidrug-resistant TB patients favored community-based care with transport support. Fluoroquinolone-based TPT was safe, reduced adverse events, and lowered TB cases.

Conclusion: CBIs are effective in preventing and treating TB, lowering prevalence rates. Key risk factors include diabetes, smoking, and low BMI. For maximum impact, community health workers require recognition, training, fair compensation, and integration into national health systems.

Introduction

Tuberculosis (TB) remains one of the leading infectious causes of death globally, with complex social determinants fundamentally shaping its transmission, progression, and prevention outcomes. Community-based interventions have emerged as critical components in TB prevention strategies, addressing not only the biological aspects of the disease but also the underlying social and economic factors that perpetuate its spread. Systematic evaluations demonstrate that community-based interventions for TB prevention and case detection show significant increases in TB detection rates (RR: 3.1, 95% CI: 2.92, 3.28) (Arshad et al. 2014). These interventions recognize that poverty is a powerful determinant of tuberculosis, with crowded and poorly ventilated living and working environments often associated with poverty constituting direct risk factors for tuberculosis transmission. (World Health Organization, 2025). The multifaceted nature of TB prevention requires comprehensive approaches that extend beyond traditional clinical settings to engage communities directly in identifying, preventing, and managing the disease.

The effectiveness of community-based approaches stems from their ability to address the social determinants of health that influence TB vulnerability and outcomes. Vulnerability to tuberculosis is influenced by biological factors (e.g., malnutrition, HIV infection, and age) and social factors (e.g., unhealthy housing, high population density, inappropriate working conditions, and lack of access to health services) (Moreira, Kritski, and Carvalho 2020)

Active case finding in households is an example of a community-based strategy that works well for the early detection of TB cases. By identifying at-risk household contacts through direct home visits, this study demonstrates how to minimize TB transmission and reduce the disease burden by enhancing the likelihood of early diagnosis and treatment. This study demonstrates that community-based interventions are a viable and significant approach to TB control, with a 1.97% TB case prevalence among household contacts. (Kshatri et al. 2022).

The accomplishments of the Vikela Ekhaya program, a community-based strategy created for managing TB contacts in Eswatini, a nation with a high TB burden. The program showed how structural barriers, like access to medical facilities, can be reduced through health teams' home visits, improving the effectiveness of TB screening and TB preventive therapy (TPT). With a 93% TPT completion rate, this study supports the notion that, especially in environments with limited resources, community-based interventions can be a very successful tactic in stopping the spread of infectious diseases like tuberculosis. (Kay et al. 2022).

Particularly in nations with high TB burdens like Ethiopia, community-based interventions like active TB screening at the household level and the distribution of TB preventive therapy (TPT) can dramatically lower TB incidence. This article offers proof that a combination of comprehensive community interventions can hasten the decline in TB incidence, increase early detection, and improve treatment outcomes—all of which are strategic steps towards TB elimination—using strategies like household contact tracing and treatment for high-risk groups. (Agizew et al. 2022).

In high-risk populations, community-based interventions like active case finding (ACF) are a strategic and successful way to identify and prevent tuberculosis (TB). Particularly in populations with a high prevalence of hidden TB, ACF facilitates early diagnosis, prompt treatment, and decreased TB transmission rates through systematic screening conducted outside of medical facilities. The argument that community-based

approaches can speed up the control of infectious diseases like tuberculosis (TB) is supported by this article's description of the opportunities and challenges of ACF. This is especially true when the approaches are properly designed to meet local needs and are backed by a thorough evaluation. (MacPherson et al. 2024).

Community-based methods for TB preventive treatment (TPT) and active contact investigation for kids in low-resource environments. In contrast to health facility-based models, the study discovered that community-based interventions, like home visits by community health workers to screen household contacts and assist TPT implementation, can significantly increase TPT initiation and completion rates. The argument that community-based interventions are an effective strategy to prevent the spread of TB is strengthened by this approach, which also helps address obstacles like access to health facilities, which are frequently difficult in nations with a high TB burden. (Vasiliu et al. 2021).

In high-risk groups, proactive community-based strategies like health promotion and systematic screening can enhance early TB detection. This article examines data showing that community-based interventions can lower community TB prevalence in addition to increasing TB case notifications when carried out with sufficient intensity and high coverage. This highlights how crucial good program design is to maximizing the epidemiological and public health advantages of community-based interventions. (Burke et al. 2021).

Viability of community-based strategies for managing children with TB cases' household contacts. According to this study, a community-based strategy can help lower transportation-related obstacles, increase patient acceptance, and make it easier to administer TB preventive therapy (TPT). The claim that community interventions are an effective way to stop the spread of tuberculosis is supported by the fact that this approach, which involves providing care directly in the community, has been demonstrated to be more accessible and successful than a model based in a medical facility. (Vasiliu et al. 2022).

Active Case Finding (ACF) is one community-based strategy that can both directly and indirectly increase the number of TB cases detected. In addition to facilitating early diagnosis through active screening, this strategy has indirect effects like raising community awareness of tuberculosis, altering care-seeking behaviors, and lowering stigma. In this regard, by reducing obstacles to receiving medical care and promoting active community participation in TB control initiatives, community-based interventions increase communities' ability to stop the spread of TB. According to this study, ACF may prove to be a successful tactic, particularly in places with poor access to medical care. (Feesey et al. 2021).

Assessed the contribution of community health workers to active contact tracing and facility-based TB screening in Mozambican communities. According to the study, a community-based intervention that included education, systematic symptom screening, and the tracking and reintegration of TB patients who had been lost before or during treatment was successful in increasing the number of TB cases reported by 14.6% and the number of bacteriological TB cases by 28.8% in the intervention area. These results add credence to the idea that community-based strategies can help close the case detection gap, boost early treatment, and aid in TB control initiatives, particularly in regions with a high disease burden. (José et al. 2020). Furthermore, this intervention lowers stigma, raises community awareness of TB, and gives communities the tools they need to actively prevent and manage the illness. By demonstrating that community strategies can increase

Nuno Pedro Guterres Magno, Elias Pereira Moniz, Isaura Belo/**KESANS**
Effectiveness of Community-Based Interventions in Preventing Tuberculosis: A Systematic Review

service coverage and fortify health systems locally, research findings also support evidence-based health policy.

Research Questions: Are community-based interventions effective in reducing the incidence or prevalence of TB?

Research Objective: The purpose of writing the article is to determine the Evaluation of the effectiveness of community-based treatment strategies in improving TB patient compliance.

Benefits of Research: Benefits of Research For academics, health practitioners, and policy makers, Numerous advantages have been demonstrated by research on the efficacy of community-based interventions in preventing tuberculosis (TB), such as assisting in the early detection of TB cases and enhancing patient adherence to treatment through mentorship by cadres or community health workers. It has been demonstrated that this method is more affordable than hospital-based services and can reach people who live far away and find it difficult to get to medical facilities.

Method

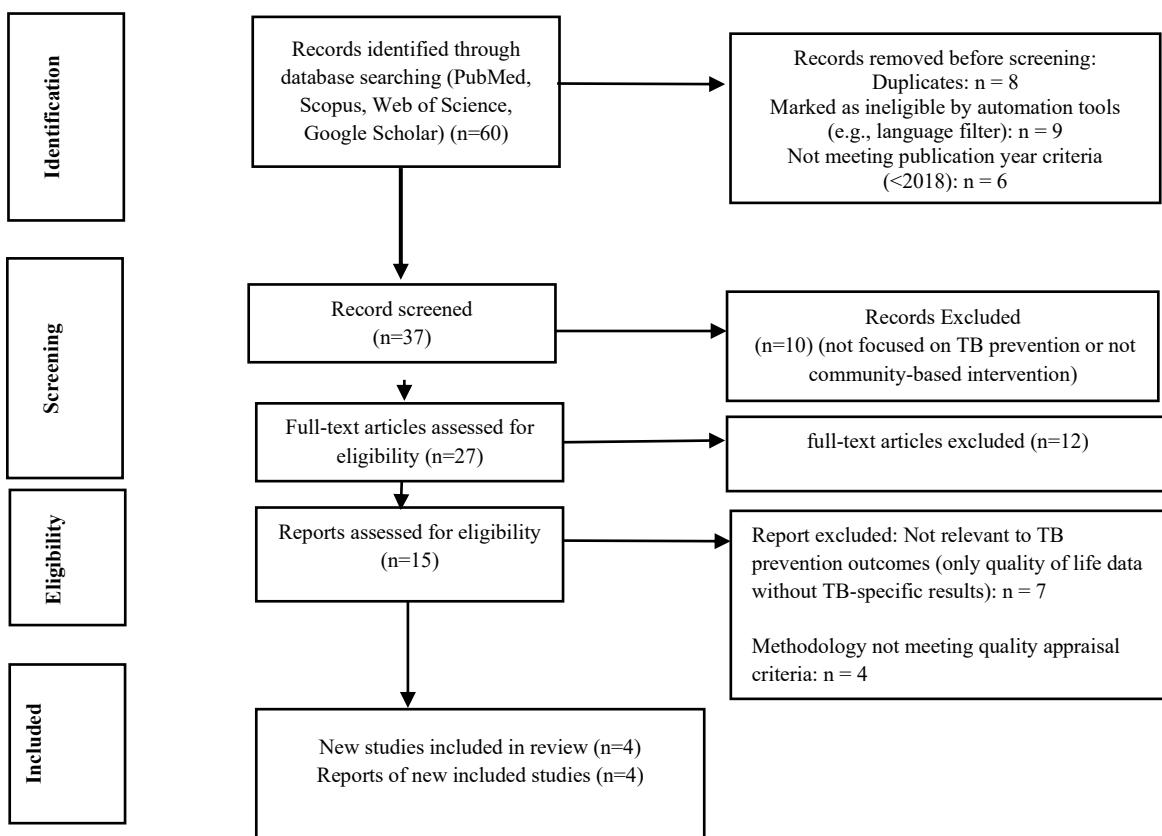
This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework. Studies were included if they involved populations in both developed and developing nations, implemented community-based tuberculosis (TB) prevention initiatives such as active case finding and preventive treatment and reported outcomes related to TB incidence, treatment adherence, early detection, or other relevant health measures. A structured literature search was carried out across PubMed, Scopus, Web of Science, and Google Scholar. The search strategy employed the terms Community-based intervention, Tuberculosis prevention, and Program effectiveness. From this process, 60 English-language publications, released between insert years, e.g., 2019-2024, met the initial selection criteria for further screening.

Table 1
Inclusion and Exclusion Criteria

Aspect	Inclusion Criteria	Exclusion Criteria
Population	Studies involving community populations (general public) in developed or developing countries who are at risk of tuberculosis (TB).	Studies limited to hospitalized TB patients without a community-based approach.
Intervention	Community-based TB prevention programs, including active case finding (ACF), community-based TB preventive treatment (TPT), health education, home visits, and empowerment of community health workers or cadres.	Interventions conducted solely at health facilities without any community involvement.
Study Design	Experimental studies (randomized controlled trials, quasi-experimental) and observational studies (cohort, cross-sectional) that evaluate community-based TB interventions.	Case reports, editorials, opinion pieces, non-systematic reviews, and studies without intervention evaluation.
Outcome	TB incidence or prevalence, treatment adherence rates, early detection rates, or other measurable indicators of TB prevention effectiveness.	Outcomes unrelated to TB prevention (e.g., general quality of life measures without TB-specific data).
Publication Language	Articles published in English.	Articles in other languages without available English translation.
Publication Year	Studies published between 2019-2024.	Studies published before 2018.

Selection and Evaluation Process

To ensure that only relevant and high-quality research on tuberculosis (TB) was included, a rigorous selection and evaluation process was employed. Specific keywords related to active case finding, patient-centered care models, preventive therapy, and the role of community health workers in TB control were used in the literature searches, which were conducted in reputable databases. Using predetermined inclusion and exclusion criteria specific to TB interventions, full-text evaluations were carried out following the removal of irrelevant studies from titles and abstracts. Standardized tools were used to evaluate the methodological quality of each TB study, and the journals' legitimacy was verified to ensure reliable sources. Because only high-quality, relevant studies on community-based TB detection, treatment, and prevention were included, this rigorous process increased the validity of the review's conclusions on strategies to improve TB outcomes.


Article Extraction Process

To maintain openness and rigor, the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were adhered to during the article extraction process in this systematic review. Following the thorough search, duplicate entries were eliminated and all found records were imported into a reference management program. The remaining articles' titles and abstracts were filtered based on predetermined inclusion criteria that addressed TB preventive therapy, patient-centered care for TB and MDR-TB, community-based TB interventions, and the function of community health workers. Potentially relevant studies were subjected to full-text review in order to determine their eligibility. A standardized data extraction form that detailed the study's characteristics, target population, intervention details, outcomes, key findings, and

methodological quality was then used to extract articles that met the inclusion criteria. A PRISMA flow diagram was utilized at every stage.

Table 2

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Initial screening process and evaluation of article quality

Relevance of the Study

With a focus on patient-centered treatment models, active case finding, and the role of community health workers, the study offers evidence on community-based TB control strategies. It backs national and international TB eradication initiatives, stressing the significance of lowering transmission and matching services to patient preferences.

Study Quality

Using community-based observational designs and discrete choice experiments, this review of research on TB interventions in real-world settings demonstrates good methodological quality. However, causal inference is limited by small sample sizes and a lack of control groups. Although the studies offer solid proof, more extensive controlled trials are required for additional validation.

Analysis Techniques

The studies examined patient preferences, TB prevalence, and the roles played by community health workers in TB prevention, detection, and treatment support using a variety of analytical techniques. While some studies focused on low BMI, smoking, diabetes, and treatment location, others employed descriptive statistics and narrative

synthesis techniques to ensure rigorous examination of results and effectively address research questions.

Data Extraction and Analysis

Data extraction and analysis, which comprises obtaining significant information from selected studies, such as participant characteristics, methodologies, interventions, and outcomes evaluated, is an essential step in systematic research. Data from each article is entered into a standardized extraction form to ensure consistency and minimize errors. The results are then synthesized through analysis, either quantitatively through meta-analysis if the data are homogeneous or narratively if the data are heterogeneous, in order to identify trends, the effectiveness of interventions, and research gaps. Comparing the results of different studies is made possible at this stage, and conclusions based on reliable evidence can be used to support health Policy or Practice.

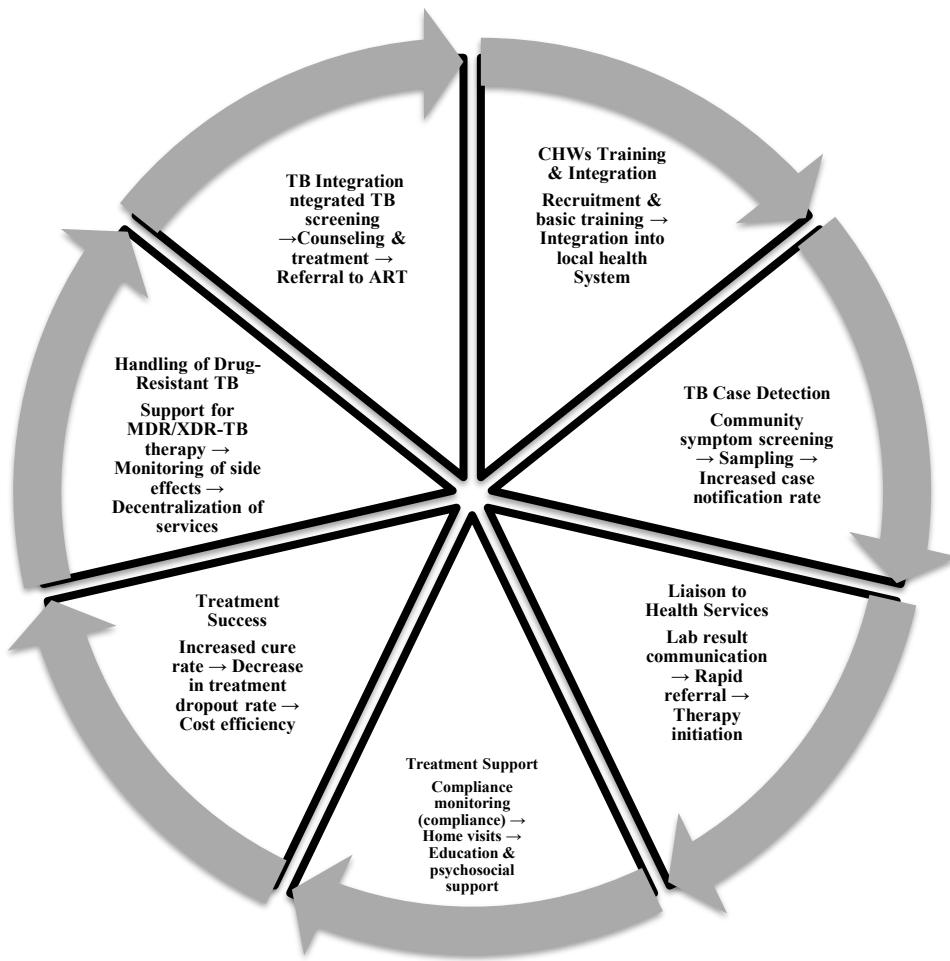
Table 3
Data Extraction

No	Topics	Author	Research Methods	Results
1	Tuberculosis Preventive Therapy for Individuals Exposed to Drug-resistant Tuberculosis: Feasibility and Safety of a community-based Delivery of Fluoroquinolone containing Preventive Regimen	(Malik et al. 2020)	Every household contact of DR-TB patients who were enrolled at the Indus Hospital had a home screening for TB symptoms conducted between February 2016 and March 2017. TB disease was assessed in children ages 0–17, symptomatic adults, and people with immunocompromising conditions (malnutrition, diabetes, or HIV). Treatment was initiated for contacts who were diagnosed with tuberculosis. A fluoroquinolone treatment for six months was offered to contacts under five years old who did not have TB disease, contacts between five and seventeen years old who had a positive tuberculin skin test or an immunocompromising condition, or contacts over eighteen years old who had an immunocompromising condition.	800 contacts from 100 households were enrolled, including 423 (52.9%) males and 353 (44.1%) people under the age of 17, with a median age of 19 (interquartile range: 10–32). Eight of the 737 (92.1%) people who were screened were already receiving TB treatment (1.1%); three more contacts (0.4%) received a TB diagnosis and began treatment. 172 (80.0%) of the 215 contacts who were eligible for infection treatment started treatment, and 121 (70.3%) finished it. Over the course of the 12-month follow-up, no significant adverse events or TB disease were noted.
2	Developing a patient-centered community-based model for management of multi-drug resistant tuberculosis in Uganda: a discrete choice experiment	(Makabayi-Mugabe et al. 2022)	Five tertiary referral hospitals participated in the study. A parallel convergent mixed methods study design was employed. Three distinct community-based care attributes (DOT provider, care location, and support type) were combined into eight choice sets, each with two options and an opt-out, in order to gather quantitative data through a discrete choice experiment (DCE). Using qualitative techniques, we extracted the patient's motivations for choosing each option. To	We conducted interviews with 103 MDR-TB patients between December 2019 and January 2020. We discovered that each of the three factors taken into account was a significant predictor of choice. Each attribute had the following relative importance: the type of DOT provider (30.3%), the location of treatment delivery (33.5%), and the type of additional support (36.2%). Treating patients at home rather than at work, receiving monthly travel vouchers as a form of extra support over phone calls or

infection among household contacts. According to these results, a proactive case-finding strategy can speed up TB diagnosis and treatment, lower transmission, enhance treatment results, and lessen the disease's socioeconomic effects.

According to this study “Developing a patient centered community-based model for management of multi drug resistant tuberculosis in Uganda: a discrete choice experiment” Multidrug-resistant tuberculosis (MDR-TB) patients in Uganda, according to this article, favor a patient-centered, community-based care model in which community health workers (CHWs) or former TB patients (expert clients) provide treatment at home with assistance in the form of monthly transport vouchers for follow-up visits to referral hospitals. The study demonstrates that the type of additional support, treatment location, and direct therapy (DOT) provider are significant factors in patient preferences using a discrete choice experiment, including 103 patients, with transport support being the most appreciated quality. These results emphasize how crucial it is to take patient preferences into account when creating TB treatments that are more efficient, less expensive, and less stigmatizing and burdensome for patients.

According to this article, “Tuberculosis Preventive Therapy for Individuals Exposed to Drug-resistant Tuberculosis: Feasibility and Safety of a Community-based Delivery of Fluoroquinolone-containing Preventive Regimen”, it is possible to safely and successfully administer fluoroquinolone-based TB preventive medication as part of a public health campaign to household contacts of drug-resistant TB (DR-TB) patients in Karachi, Pakistan. Of the 800 contacts polled, 215 were eligible for infection treatment, 80% of whom started therapy, and 70.3% of whom finished it. Adverse events were few, particularly with the regimen that combined ethambutol and fluoroquinolone, and there were no TB cases throughout the 12-month follow-up period. In a high-burden, resource-constrained TB situation, this study shows that a community-based prevention approach may be successfully implemented. It may also serve as a model for national programs in comparable nations.


The importance of community health workers (CHWs) in the worldwide fight to eradicate tuberculosis (TB) is emphasized in the article “Opportunities for Community Health Workers to Contribute to Global Efforts to End Tuberculosis”. It has been demonstrated that CHWs are successful in all areas of TB care, including prevention, treatment assistance, case detection, and connection to health services. Involving CHWs can enhance patient adherence, speed up treatment, raise case identification rates, and save healthcare expenditures, including for drug-resistant TB and HIV-associated TB, according to studies conducted in several nations. Despite the WHO's recognition of CHWs' contributions, they are still frequently viewed as supplementary rather than essential to health systems. To enable CHWs to eradicate tuberculosis worldwide, this article advocates for their official recognition, sufficient training, equitable compensation, and integration into national health systems.

Findings

From early detection through training and community symptom screening, to sample collection and raising case notification rates, Community Health Workers (CHWs) play a critical role in TB control. Additionally, CHWs facilitate access to health care by expediting the diagnosis and therapy process, monitoring drug use (through e-compliance), and preventing treatment discontinuation through home visits, education, and support for treatment compliance. Compared to clinic-based methods, this intensive help has been shown to save expenses per patient and boost cure rates. Additionally,

CHWs help manage drug-resistant TB co-infection by providing dual screening and integrated therapy support. They also help prevent TB and comorbidities by using preventive therapy (IPT) and early non-communicable disease detection.

Table 4
Process for Strategic Role of Community Health Workers (CHWs) in Tuberculosis Elimination

Conclusions

Numerous studies demonstrate how successful community-based programs are at preventing and treating tuberculosis. With a 1.97% prevalence rate, a study conducted in southern Haryana showed the effectiveness of proactive case-finding among household contacts of newly diagnosed TB patients. Diabetes, smoking, frequent interaction, and low BMI were important risk factors. MDR-TB patients in Uganda favored a patient-centered, community-based care strategy that included monthly travel assistance in addition to home-based therapy provided by community health workers (CHWs) or previous TB patients. This strategy underlined how crucial it is to match patient preferences with TB interventions to provide accessible, affordable, and stigma-free care. Similarly, despite limited resources, research conducted in Karachi, Pakistan, demonstrated that household contacts of drug-resistant TB patients could get fluoroquinolone-based preventative treatment in a safe and effective manner with a high initiation and completion rate. CHWs have proved crucial in increasing treatment adherence, speeding up recovery, and lowering medical expenses in a variety of contexts.

However, CHWs need to be officially recognized, well-trained, fairly compensated, and completely integrated into national health systems for community-based TB interventions to have the greatest possible impact.

Implications for Policy and Practice

In areas with a high TB burden, active screening programs for household contacts of TB patients should be incorporated into primary health care, according to a study conducted in Haryana that demonstrated the effectiveness of household-level active case finding strategies in boosting early detection of TB.

To increase adherence, lessen stigma, and lower treatment costs, a study conducted in Uganda highlighted the significance of a patient-centered approach with community care services for MDR-TB. These services should include transportation assistance and the use of CHWs or former TB patients as treatment providers.

The policy of offering community-based preventive therapy in nations with a high burden of DR-TB is supported by a study conducted in Pakistan that demonstrated that fluoroquinolone-based TB preventive therapy can be safely administered through a community approach to household contacts of DR-TB patients.

Strengths and Limitations of the Study

Study Strengths: The efficacy of community-based TB management strategies, such as active case detection, preventive therapy, and treatment of MDR-TB patients, is amply demonstrated by these four community-based studies.

Study Constraints: Since the majority of the data originates from studies with restricted geographic and socioeconomic contexts (Karachi, Haryana, and Uganda), there is a chance of publication bias; therefore, care must be taken when extrapolating to the global population. Furthermore, some research has methodological flaws, like observational designs with weak control groups.

Aberration

ACF – Active Case Finding

BMI – Body Mass Index

CASP – Critical Appraisal Skills Programme

CHW – Community Health Worker

CI – Community Intervention

DCE – Discrete Choice Experiment

DOT – Directly Observed Therapy

DOTS – Directly Observed Treatment, Short-course

DR-TB – Drug-Resistant Tuberculosis

e-compliance – Electronic Compliance

HCI – Household Contact Investigation

HCF – Health Care Facility / Health Facility

HHC – Household Contacts

HF – Health Facility

HIV – Human Immunodeficiency Virus

IPT – Isoniazid Preventive Therapy

IQR – Interquartile Range

JBI – Joanna Briggs Institute

LMIC – Low- and Middle-Income Countries

mHealth – Mobile Health

MDR-TB – Multi-Drug-Resistant Tuberculosis

NTP – National Tuberculosis Program

Nuno Pedro Guterres Magno, Elias Pereira Moniz, Isaura Belo/**KESANS**
Effectiveness of Community-Based Interventions in Preventing Tuberculosis: A Systematic Review

PRISMA – Preferred Reporting Items for Systematic Reviews and Meta-Analyses

QoL – Quality of Life

RCT – Randomized Controlled Trial

SD – Study Design

SMS – Short Message Service

TB – Tuberculosis

TPT – TB Preventive Therapy

TU – Tuberculosis Unit

WHO – World Health Organization

Reference

Agizew, Tefera Belachew, Zewdu Gashu Dememew, Taye Leta, Nebyu Hiruy, Emawayish Tesema, Eshetu Abdissa Abelti, Asfawesen Gebreyohannes, et al. 2022. [Prospects for Tuberculosis Elimination in Ethiopia: Feasibility, Challenges, and Opportunities](#). *Pan African Medical Journal* 43. doi:10.11604/pamj.2022.43.146.35557.

Arshad, Ahmed, Rehana A. Salam, Zohra S. Lassi, Jai K. Das, Imama Naqvi, and Zulfiqar A. Bhutta. 2014. [Community-Based Interventions for the Prevention and Control of Tuberculosis](#). *Infectious Diseases of Poverty* 3(1). doi:10.1186/2049-9957-3-27.

Burke, Rachael M., Marriott Nliwasa, Helena R.A. Feasey, Lelia H. Chaisson, Jonathan E. Golub, Fahd Naufal, Adrienne E. Shapiro, et al. 2021. [Community-Based Active Case-Finding Interventions for Tuberculosis: A Systematic Review](#). *The Lancet Public Health* 6(5): e283 99. doi:10.1016/S2468-2667(21)00033-5.

Feasey, Helena R.A., Rachael M. Burke, Marriott Nliwasa, Lelia H. Chaisson, Jonathan E. Golub, Fahd Naufal, Adrienne E. Shapiro, et al. 2021. [Do Community-Based Active Case-Finding Interventions Have Indirect Impacts on Wider TB Case Detection and Determinants of Subsequent TB Testing Behaviour? A Systematic Review](#). *PLOS Global Public Health* 1(12). doi:10.1371/journal.pgph.0000088.

José, B., I. Manhiça, J. Jones, C. Mutaquiha, P. Zindoga, I. Eduardo, J. Creswell, et al. 2020. [Using Community Health Workers for Facility and Community-Based TB Case Finding: An Evaluation in Central Mozambique](#). *PLoS ONE* 15(7 July): 1–10. doi:10.1371/journal.pone.0236262.

Kay, Alexander W., Micaela Sandoval, Godwin Mtetwa, Musa Mkhabela, Banele Ndlovu, Tara Devezin, Welile Sikhondze, et al. 2022. [Vikela Ekhaya: A Novel, Community-Based, Tuberculosis Contact Management Program in a High Burden Setting](#). *Clinical Infectious Diseases* 74(9): 1631–38. doi:10.1093/cid/ciab652.

Kshatri, Jaya S., Parmeshwar Satpathy, Sumita Sharma, Trilochan Bhoi, Smruti P. Mishra, and Soumya S. Sahoo. 2022. [Health Research in the State of Odisha, India: A Decadal Bibliometric Analysis \(2011-2020\)](#). *Journal of Family Medicine and Primary Care* 6(2): 169–70. doi:10.4103/jfmpc.jfmpc.

MacPherson, Peter, Kwame Shanaube, Mphatso D. Phiri, Hannah M. Rickman, Katherine C. Horton, Helena R. A. Feasey, Elizabeth L. Corbett, Rachael M. Burke, and Molebogeng X. Rangaka. 2024. [Community-Based Active-Case Finding for Tuberculosis: Navigating a Complex Minefield](#). *BMC Global and Public Health* 2(1). doi:10.1186/s44263-024-00042-9.

Makabayi-Mugabe, Rita, Joseph Musaazi, Stella Zawedde-Muyanja, Enock Kizito, Hellen Namwanje, Philip Aleu, Danielle Charlet, et al. 2022. [Developing a Patient-Centered Community-Based Model for Management of Multi-Drug Resistant Tuberculosis in Uganda: A Discrete Choice Experiment](#). *BMC Health Services Research* 22(1): 1–11. doi:10.1186/s12913-021-07365-5.

Malik, Amyn A., Junaid Fuad, Sara Siddiqui, Farhana Amanullah, Maria Jaswal, Zainab Barry, Farhat Jabeen, et al. 2020. [Tuberculosis Preventive Therapy for Individuals Exposed to Drug-Resistant Tuberculosis: Feasibility and Safety of a Community-Based Delivery of Fluoroquinolone-Containing Preventive Regimen](#). *Clinical Infectious Diseases* 70(9): 1958–65. doi:10.1093/cid/ciz502.

Nuno Pedro Guterres Magno, Elias Pereira Moniz, Isaura Belo/**KESANS**
Effectiveness of Community-Based Interventions in Preventing Tuberculosis: A Systematic Review

Moreira, Adriana da Silva Rezende, Afrânio Lineu Kritski, and Anna Cristina Calçada Carvalho. 2020. [Social Determinants of Health and Catastrophic Costs Associated with the Diagnosis and Treatment of Tuberculosis](#). *Jornal Brasileiro de Pneumologia* 46(5): 1–5. doi:10.36416/1806 3756/e20200015.

World Health Organization. 2025. Social Determinants. <https://www.who.int/teams/global-tuberculosis-programme/populations-comorbidities/social-determinants>.

Sinha, Pranay, Sheela V. Shenoi, and Gerald H. Friedland. 2020. [Opportunities for Community Health Workers to Contribute to Global Efforts to End Tuberculosis](#). *Global Public Health* 15(3): 474–84. doi:10.1080/17441692.2019.1663361.

Vasiliu, Anca, Sabrina Eymard-Duvernay, Boris Tchounga, Daniel Atwine, Elisabete de Carvalho, Sayouba Ouedraogo, Michael Kakinda, et al. 2021. [Community Intervention for Child Tuberculosis Active Contact Investigation and Management: Study Protocol for a Parallel Cluster Randomized Controlled Trial](#). *Trials* 22(1): 1–15. doi:10.1186/s13063-021-05124-9.

Vasiliu, Anca, Georges Tiendrebeogo, Muhamed Mbunka Awolu, Cecilia Akatukwasa, Boris Youngui Tchakounte, Bob Ssekyanzi, Boris Kevin Tchounga, et al. 2022. [Feasibility of a Randomized Clinical Trial Evaluating a Community Intervention for Household Tuberculosis Child Contact Management in Cameroon and Uganda](#). *Pilot and Feasibility Studies* 8(1): 1–12. doi:10.1186/s40814-022-00996-3.